Ex vivo and in vitro testis and ovary explants: utility for identifying steroid biosynthesis inhibitors and comparison to a Tier I screening battery.
نویسندگان
چکیده
Testis and ovary explants have been proposed as in vitro screens for identifying potential inhibitors of steroid biosynthesis. The goals of the current study were to optimize the conditions of the two assays, to characterize these assays using several compounds with well-defined endocrine activity, and to compare the responses from the explant assays with an in vivo male battery currently undergoing validation using the Crl:CD BR rat in order to evaluate their utility as test systems for screening unknown compounds for possible steroid biosynthesis inhibition activity. There were two components to the testis/ovary assays: ex vivo and in vitro. The ex vivo component used testes/ovaries from animals dosed with the test compounds in vivo, and the in vitro component used testes/ovaries from control animals. For the testis assays, decapsulated testis explants (50 mg) were placed into glass scintillation vials, +/-1.0 IU/ml hCG for 3 h in a shaking water bath (34 degrees C). Following the incubation period, medium was removed, centrifuged, and frozen until assayed for hormone concentrations. A similar procedure was used for the ovary explant assay except that each ovary was incubated separately. The testis explants were evaluated using the following compounds: ketoconazole (KETO), a testosterone biosynthesis inhibitor; aminoglutethimide (AG) (only in vitro) and anastrozole (ANA), aromatase inhibitors; finasteride (FIN), a 5alpha-reductase inhibitor; 17beta-estradiol (17beta-E2), an estrogen receptor agonist; flutamide (FLUT), an androgen receptor antagonist; ICI-182,780 (ICI), an estrogen receptor antagonist; haloperidol (HALO), a D2 receptor antagonist; and reserpine (RES), a dopamine depletor. In the ovary assay, AG (only in vitro), ANA, ICI, and HALO (only in vitro) were evaluated. Addition of fetal calf serum to the medium allowed measurement of estradiol (E2) in the testis assay, but production was not inhibited by ANA or AG. In the ovary explant assay, only AG was identified as inhibiting E2 production in vitro. Hence, both the testis and ovary explant assays appear to have limited utility for detecting aromatase inhibitors. Screening of these nine diverse endocrine-active compounds resulted in all of them being identified as altering the endocrine system when assessed by ex vivo and in vitro testis explants. Using only the in vitro assessment with the criteria of steroid biosynthesis inhibition, four of nine compounds were correctly identified in the testis explant assay (17beta-E2, KETO, FLUT, and HALO). The predictability of both the in vitro and ex vivo ovary assay was 50%, suggesting a 50% false positive or negative rate with unknown compounds. However, of the seven compounds assessed to date (17beta-E2, ICI, ANA, KETO, FLUT, HALO, and RES), all were correctly identified using an in vivo male battery, which also has the capability to detect other endocrine activities. Therefore, the testis and ovary explant assay would not be necessary if one were using an in vivo male battery, since this screen would identify steroid biosynthesis inhibitors and would also identify several other endocrine activities. Because of the difficulties in assessing cytotoxicity and the high false positive/negative rates, the ovary and testis explant assays are not useful as routine screening procedures for detecting steroid biosynthesis inhibitors; however, they may have utility in confirming in vivo findings.
منابع مشابه
Comparison of fathead minnow ovary explant and H295R cell-based steroidogenesis assays for identifying endocrine-active chemicals.
An in vitro steroidogenesis assay using H295R human adenocarcinoma cells has been suggested as a possible alternative to gonad explant assays for use as a Tier I screening assay to detect endocrine active chemicals capable of modulating steroid hormone synthesis. This study is one of the first to investigate the utility of the H295R assay for predicting effects and/or understanding mechanisms o...
متن کاملEffects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat
Citation for published version: Hallmark, N, Walker, M, McKinnell, C, Mahood, IK, Scott, H, Bayne, R, Coutts, S, Anderson, RA, Greig, I, Morris, K & Sharpe, RM 2007, 'Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in t...
متن کاملEvaluation of a Tier I screening battery for detecting endocrine-active compounds (EACs) using the positive controls testosterone, coumestrol, progesterone, and RU486.
After previously examining 12 compounds with known endocrine activities, we have now evaluated 4 additional compounds in a Tier I screening battery for detecting endocrine-active compounds (EACs): a weak estrogen receptor (ER) agonist (coumestrol; COUM), an androgen receptor (AR) agonist (testosterone; TEST), a progesterone receptor (PR) agonist (progesterone; PROG), and a PR antagonist (mifepr...
متن کاملارائه یک روش جدید برای اندازهگیری فعالیت آنزیم 3-بتا-هیدروکسی استرویید دهیدروژناز
3 beta-Hydroxy-Delta-5-steroid dehydrogenase is an important key anzyme of steroid hormone biosynthesis, which is involved in catalyzing the conversion of pregnenolone to progesterone in the biosynthesis of steroid sex hormones. This complex enzyme is the second enzyme in the steroid hormone biosynthesis pathway and it is identified as an autoantigenic target. In this study, a simple ...
متن کاملNovel trends in endocrine disruptor testing: the H295R Steroidogenesis Assay for identification of inducers and inhibitors of hormone production.
Over the past two decades, there has been increasing concern about the possible impacts of exposure to chemicals in the environment on endocrine and reproductive systems in humans and wildlife [1]. To address these concerns, national and international programs have been initiated to develop new guidelines for the screening and testing of potential endocrine-disrupting chemicals (EDCs) in verteb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 46 1 شماره
صفحات -
تاریخ انتشار 1998